| A. | ?x0∈(0,+∞),x0<sinx0 | B. | ?x∈(-∞,0),ex>x+1 | ||
| C. | ?x>0,5x>3x | D. | ?x0∈R,lnx0<0 |
分析 利用反例判断A的正误;利用函数的导数判断函数的单调性以及最值,推出B的正误;指数函数的性质判断C的正误;特例判断D的正误.
解答 解:x∈(0,$\frac{π}{2}$)时,x>sinx,所以?x0∈(0,+∞),x0<sinx0不正确;
x∈(-∞,0),令g(x)=ex-x-1,可得g′(x)=ex-1<0,函数是减函数,g(x)>g(0)=0,
可得?x∈(-∞,0),ex>x+1恒成立.
由指数函数的性质的可知,?x>0,5x>3x正确;
?x0∈R,lnx0<0,的当x∈(0,1)时,恒成立,所以正确;
故选:A.
点评 本题考查命题的真假的判断与应用,考查函数的导数与函数的单调性的关系,函数的最值的求法,指数函数的性质,命题的真假的判断,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{8}$ | B. | $-\frac{7}{8}$ | C. | $\frac{8}{9}$ | D. | $-\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | $\frac{4}{5}-\frac{3}{5}$i | C. | i | D. | $\frac{4}{3}$-i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com