精英家教网 > 高中数学 > 题目详情
1.如图,半径为4的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是32π.

分析 根据题意,结合图形,利用直角三角形的边角关系,求出内接圆柱的侧面积以及面积最大值,再求出S-S圆柱侧的值.

解答 解:如图所示,
设∠OAO′=θ,半径O′A=4cosθ=r,OO′=4sinθ;
∴S圆柱侧=2πr•2OO′
=2π•4cosθ•2•4sinθ
=64πsinθcosθ
=32πsin2θ,
∴当sin2θ=1,即θ=45°时,圆柱的侧面积取得最大值32π,
此时S=4π×16=64π,
S-S圆柱侧=32π.
故答案为:32π.

点评 本题考查了球的表面积与球内接圆柱体的侧面积的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin(2x+φ),0<φ≤π图象的一条对称轴是直线$x=\frac{π}{8}$,则φ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线y=2x+b过点(1,2),则b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠-1,则x2-3x+2≠0”
B.若p∧q为假命题,则p、q均为假命题
C.“x=1”是“x2-3x+2=0的充分不必要条件”
D.对于命题p:?x0∈R使得x02+x0+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C经过A(1,1),B(0,2)两点,并且圆心C在直线2x-y=0上.
(1)求该圆的方程
(2)求该圆过点(2,4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有3名男生,2名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边的位置,共72种排法;
(2)全体排成一行,其中男生必须排在一起,共36种排法;
(3)全体排成一行,男生不能排在一起,共12种排法;
(4)全体排成一行,其中甲、乙、丙三人从左到右的顺序不变,共20种排法;
(5)全体排成一行,其中甲不再最左边,乙不在最右边,共78种排法;
(6)若再加入一名女生,全体排成一行,男女各不相邻,共144种排法;
(7)排成前后两排,前排3人,后排2人,共120种排法;
(8)全体排成一行,甲、乙两人中间必须有1人,共36种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2-x.则方程$f(x)=\frac{1}{n}x$在区间[0,2n)(其中n∈N*)上所有根的和为n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=sin(ωx+φ)(其中ω>0)在(0,$\frac{π}{3}$)上单调递增,且f($\frac{π}{6}$)+f($\frac{π}{3}$)=0,f(0)=-1,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.己知,集合A={-3,-1,3,1},集合B={-2,-1,0,1,2},则A∪B(  )
A.{-3,-2,-1,1,2,3}B.M={-1,1}
C.M={0}D.M={-3,-2,-1,0,1,2,3}

查看答案和解析>>

同步练习册答案