精英家教网 > 高中数学 > 题目详情

【题目】下列命题中的假命题是(
A.?x∈R,2x+1>1
B.?x∈[1,2],x2﹣1≥0
C.?x∈R,sinx+cosx=
D.?x∈R,x2+ ≤1

【答案】C
【解析】解:由于对x∈R,2x>0,故A为真命题;
由于y=x2﹣1在[1,2]上为增函数,则ymin=1﹣1=0,故B为真命题;
由于sinx+cosx= sin(x+ )∈[﹣ ],而 [﹣ ],故C为假命题;
由于x=0∈R时,x2+ =1,故D为真命题.
故选:C.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣3)2+y2=1,圆M的方程为(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加工厂用某原料由车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(
A.甲车间加工原料10箱,乙车间加工原料60箱
B.甲车间加工原料15箱,乙车间加工原料55箱
C.甲车间加工原料18箱,乙车间加工原料50箱
D.甲车间加工原料40箱,乙车间加工原料30箱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是(  )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ ]
D.[﹣1,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣ax﹣1(a∈R).
(1)若对任意实数x,f(x)<0恒成立,求实数a的取值范围;
(2)当a>0时,解关于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差不为0的等差数列,数列{bn}是等比数列,且b1=a1=1,b2=a3 , b3=a9
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单调递增数列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差数列,a2n , a2n+1 , a2n+2成等比数列,n=1,2,3,….
(Ⅰ)(ⅰ)求证:数列 为等差数列;
(ⅱ)求数列{an}的通项公式.
(Ⅱ)设数列 的前n项和为Sn , 证明:Sn ,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学典籍《九章算术》“盈不足”中有一道问题:“今有垣高九尺,瓜生其上,蔓日长七寸;瓠生其下,蔓日长一尺,问几何日相逢?”现用程序框图描述,如图所示,则输出的结果n=(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步练习册答案