精英家教网 > 高中数学 > 题目详情

【题目】祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.一般大型热电厂的冷却塔大都采用双曲线型.设某双曲线型冷却塔是曲线 与直线 所围成的平面图形绕轴旋转一周所得,如图所示.试应用祖暅原理类比求球体体积公式的方法,求出此冷却塔的体积为_______.

【答案】

【解析】设点,则,所以圆环的面积为.

因为,所以,所以圆环的面积为.

根据祖暅原理可知,该双曲线型冷却塔挖出一个以渐近线为母线的圆锥后的几何的体积等于底面半径为、高为的圆柱的体积,所以冷却塔的体积为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,平面分别是的中点.

1证明:

2上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若长方体的底面是边长为2的正方形,高为4的中点,则(

A.B.平面平面

C.三棱锥的体积为D.三棱锥的外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点,且被轴所截得的弦长为,圆心在第一象限.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过作圆的切线,切点为,当△的面积最小时,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求实数的值;

(2)设 分别是函数的两个零点,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,该产品需另投入流动成本万元.在年产量不足8万件时,,在年产量不小于8万件时,每件产品的售价为5元.通过市场分析,小王生产的商品能当年全部售完.

1)写出年利润单位:万元关于年产量单位:万件的函数解析式.

2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

注:年利润年销售收入固定成本流动成本

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的圆心在轴右侧,原点和点都在圆上,且圆轴上截得的线段长度为3

1)求圆的方程;

2)若为圆上两点,若四边形的对角线的方程为,求四边形面积的最大值;

3)过点作两条相异直线分别与圆相交于两点,若直线的斜率分别为,且,试判断直线的斜率是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案