精英家教网 > 高中数学 > 题目详情

【题目】已知y=f(x)为R上的可导函数,当时, , 则函数g(x)=f(x)+的零点分数为( )
A.1
B.2
C.0
D.0或2

【答案】C
【解析】因为函数为R上的可导函数,当时, .即可.令 , 即.所以可得.所以当函数时单调递增,所以.即函数当时,.同理时,.又因为函数可化为.所以当时,即与x轴没交点.当时,.所以函数的零点个数为0.故选C.
【考点精析】掌握函数单调性的性质和函数的最值及其几何意义是解答本题的根本,需要知道函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面的折线图表示某商场一年中各月份的收入、支出情况,据此判断下列说法错误的是( )

A. 2至3月份的收入的变化率与11至12月份的收入的变化率相同

B. 支出最高值与支出最低值的比是6:1

C. 第三季度的月平均收入为50万元

D. 利润最高的月份是2月份(利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求实数的取值范围;

(3)设函数,若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交警部门从某市参加年汽车驾照理论考试的名学员中用系统抽样的方法抽出名学员,将其成绩(均为整数)分成四段后画出的频率分布直方图如图所示,回答下列问题:

(1)求图中的值;

(2)估计该市年汽车驾照理论考试及格的人数(不低于分为及格)及抽样学员成绩的平均数;

(3)从第一组和第二组的样本中任意选出名学员,求名学员均为第一组学员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, ,数列满足

(1)求证:数列是等差数列。

(2)试确定数列中的最大项和最小项,并求出相应项的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=a|x﹣b|+c满足①函数f(x)的图象关于x=1对称;②在R上有大于零的最大值;③函数f(x)的图象过点(0,1);④a,b,c∈Z,试写出一组符合要求的a,b,c的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商家生产一种产品需要先进行市场调研计划对北京、上海、广州三地进行市场调研待调研结束后决定生产的产品数量下列四种方案中最可取的是(  )

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案