精英家教网 > 高中数学 > 题目详情

【题目】已知点A,B,C,D是直角坐标系中不同的四点,若 (λ∈R), (μ∈R),且 =2,则下列说法正确的是(
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C,D可能同时在线段AB上
D.C,D不可能同时在线段AB的延长线上

【答案】D
【解析】解:由题意知 (λ∈R), (μ∈R)且 =2,
故A,B,C,D四点共线,
若C是线段AB的中点, = ,∴λ= ,μ=0,不成立,A错误;
同理,若D是线段AB的中点, = ,∴λ=0,μ= ,不成立,B错误;
若C,D同时在线段AB上,则0<λ<1,0<μ<1,
>2,与 =2矛盾,故C错误;
若C,D不可能同时在线段AB的延长线上,
假设M,N同时在线段AB的延长线上,
则λ>1.μ>1,∴ <2,与 =2矛盾,
故假设不成立,所以C、D不可能同时在线段AB的延长线上,故D正确.
故选:D.
【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】移动公司在春节正月初八这天推出4G套餐,对这天办理套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元. 初八当天参与活动的人数统计结果如图所示,

(Ⅰ)从参加当天活动的人中任选一人,求此人获得优惠金额不低于300元的概率(将频率视为概率);

(Ⅱ)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选两人,求这两人获得相等优惠金额的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 是奇函数,则使f(x)>3成立的x的取值范围为(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】已知函数

时,求证:过点有三条直线与曲线相切;

时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72


(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=﹣an2+2an , n∈N* , 且a1=0.9,令bn=lg(1﹣an);
(1)求证:数列{bn}是等比数列;
(2)求数列{ }各项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017扬州一模20】已知函数,其中函数

(1)求函数处的切线方程

(2)当时,求函数上的最大值;

(3)当时,对于给定的正整数,问函数是否有零点?请说明理由.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,n∈N*
(1)求证:数列 为等比数列;
(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且am﹣1,as﹣1,at﹣1成等比数列?如果存在,求出所有符合条件的m,s,t;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设an= sin ,Sn=a1+a2+…+an , 在S1 , S2 , …S100中,正数的个数是(
A.25
B.50
C.75
D.100

查看答案和解析>>

同步练习册答案