精英家教网 > 高中数学 > 题目详情
已知椭圆为坐标原点,椭圆的右准线与轴的交点是
(1)点在已知椭圆上,动点满足,求动点的轨迹方程;
(2)过椭圆右焦点的直线与椭圆交于点,求的面积的最大值
(1)(2)
(1)可得点.设,则
,又因为点在已知椭圆上,故为动点的轨迹方程.
(2)椭圆的右焦点,设直线的方程是,与联立,可得,设,则,于是

到直线的距离,于是的面积
,当且仅当,即时取到等号.故的面积的最大值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,过且倾斜角为的直线交,两点,则 ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点到准线的距离为.过点
作直线交抛物线两点(在第一象限内).
(1)若与焦点重合,且.求直线的方程;
(2)设关于轴的对称点为.直线轴于. 且.求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·泉州模拟]已知椭圆的焦点是F1、F2,P是椭圆的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(  )
A.圆B.椭圆C.双曲线的一支D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.

(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

同步练习册答案