精英家教网 > 高中数学 > 题目详情
如果对于函数f(x)的定义域内的任意x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”?
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对任意的x,x2∈[0,1]都有|f(x1)-f(x2)|≤
12
分析:(1)只需按照定义作差:|f(x1)-f(x2)|,然后寻求|f(x2)-f(x1)|≤|x2-x1|成立的条件.
(2)利用f(0)=f(1),进行适当放缩外,注意添项减项的技巧应用,即可证得结论.
解答:(1)解:对于任意x1,x2∈[0,1],有0≤x1+x2≤2,
∴-1≤x1+x2-1≤1,
∴|x1+x2-1|≤1.
∴|f(x1)-f(x2)|=|(x12-x1)-(x22-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|.
∴函数f(x)=x2-x,x∈[0,1]是“平缓函数”.
(2)证明:当|x1-x2|<
1
2
时,由已知得|f(x1)-f(x2)|≤|x1-x2|<
1
2

当|x1-x2|≥
1
2
时,,x1,x2∈[0,1],不妨设0≤x1<x2≤1,其中x1-x2
1
2

∵f(0)=f(1),
∴|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|
≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-
1
2
+1=
1
2

∴对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
1
2
.成立.
点评:新定义函数类型的题目,解答时要先充分理解定义,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果对于函数f(x)的定义域内任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”;
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
12
成立.
(3)设a、m为实常数,m>0.若f(x)=alnx是区间[m,+∞)上的“平缓函数”,试估计a的取值范围(用m表示,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如果对于函数f(x)定义域内任意的两个自变量的值x1,x2,当x1<x2时,都有f(x1)≤f(x2),且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),就称f(x)为定义域上的不严格的增函数,已知函数g(x)的定义域、值域分别为A、B,A=1,2,3,B⊆A,且g(x)为定义域A上的不严格的增函数,那么这样的g(x)共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对于函数f(x)定义域内任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中的最大值叫做f(x)的下确界.定义在[1,e]上的函数f(x)=2x-1+lnx的下确界M=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界,就称其为函数f(x)的上确界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上确界T(m).

查看答案和解析>>

同步练习册答案