精英家教网 > 高中数学 > 题目详情
f(x)是定义在R上的奇函数,下列结论中,不正确的是
 

(1)f(-x)+f(x)=0;(2)f(-x)-f(x)=-2f(x);(3)f(x)•f(-x)≤0;(4)
f(x)f(-x)
=-1.
分析:根据奇函数的定义“设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.”进行逐一判定即可.
解答:解:根据奇函数的定义可知f(-x)=-f(x),则(1),(2)正确;
对于(3),f(x)f(-x)=-f2(x)≤0,故正确;
对于(4),f(x)是定义在R上的奇函数,则f(0)=0,则(4)不正确
故答案为:(4)
点评:本题主要考查了奇函数的定义,以及奇函数的性质等有关知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且x≥0时,f(x)=(
1
2
x,函数f(x)的值域为集合A.
(Ⅰ)求f(-1)的值;
(Ⅱ)设函数g(x)=
-x2+(a-1)x+a
的定义域为集合B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,对任意实数m、n,都有f(m)•f(n)=f(m+n),且当x<0时,f(x)>1.
(1)证明:①f(0)=1;②当x>0时,0<f(x)<1;③f(x)是R上的减函数;
(2)设a∈R,试解关于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(-2,0)时,f(x)=2x-2,则f(-3)的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=(  )
A、-
3
4
(1-31007
B、-
3
4
(1+31007
C、-
1
4
(1-
1
31007
D、-
1
4
(1+
1
31007

查看答案和解析>>

同步练习册答案