精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为为参数).

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)若直线与曲线交于两点,求的值,并求定点两点的距离之积.

【答案】(Ⅰ)直线的普通方程,曲线的直角坐标方程为;(Ⅱ).

【解析】

(Ⅰ)由可得曲线的直角坐标方程为;用消参法消去参数,得直线的普通方程.

(Ⅱ)将直线的参数方程代入曲线的直角坐标方程中,由直线的参数方程中的参数几何意义求解.

(Ⅰ)由为参数),消去参数,得直线的普通方程.

,得曲线的直角坐标方程为.

(Ⅱ)将直线的参数方程为为参数),

代入,得.

.

.

所以,的值为,定点两点的距离之积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)=x3ax2bx+1的导数f′(x)满足f′(1)=2af′(2)=-b,其中常数ab∈R.

(1)求曲线yf(x)在点(1,f(1))处的切线方程;

(2)g(x)=f′(x)ex,求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个极值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,OE分别是BDBC的中点,

)求证:平面BCD

)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知, , 是正三角形, .

(1)求证:平面平面

(2)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为立方米,且分上下两层,其中上层是半径为(单位:米)的半球体,下层是半径为米,高为米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为千元.

参考公式:球的体积,球的表面积,其中为球的半径.

1)求关于的函数解析式,并指出该函数的定义域;

2)当半径为何值时,每座帐篷的建造费用最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,直线与曲线相交于不同的两点

(1)若,求直线的普通方程和曲线的直角坐标方程;

(2)若的等比中项,其中,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值.

(1)求的取值范围;

(2)若处取得极值,且当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的左、右焦点为,右顶点为,上顶点为.已知

1)求椭圆的离心率;

2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

同步练习册答案