精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(λ,-1),若$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.$\sqrt{10}$B.4C.$\sqrt{17}$D.$2\sqrt{5}$

分析 根据向量的垂直求出λ的值,求出$\overrightarrow{a}$+$\overrightarrow{b}$的值,从而求出其模即可.

解答 解:∵$\overrightarrow a$=(1,2),$\overrightarrow b$=(λ,-1),$\overrightarrow a$⊥$\overrightarrow b$,
∴λ-2=0,∴λ=2,
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(1,2)+(2,-1)=(3,1),
则|$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{9+1}$=$\sqrt{10}$,
故选:A.

点评 本题考查了向量的垂直问题,考查向量求模问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是奇函数又是减函数的为(  )
A.y=x+1B.y=-x2C.$y=\frac{1}{x}$D.y=-x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,已知前15项的和S15=45,则a8等于 (  )
A.$\frac{45}{4}$B.6C.$\frac{45}{8}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+2,则满足$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$的n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x+a)lnx,g(x)=$\frac{{2{x^2}}}{e^x}$,已知曲线y=f(x)在x=1处的切线过点(2,3).
(1)求实数a的值.
(2)是否存在自然数k,使得函数y=f(x)-g(x)在(k,k+1)内存在唯一的零点?如果存在,求出k;如果不存在,请说明理由.
(3)设函数h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的较小值),对于实数m,?x0∈(0,+∞),使得h(x0)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且x>0时,f(x)=log2(x+1)+3x,则满足f(x)>-4的实数x的取值范围是(  )
A.(-2,2)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a>0,b>0,a+b=1,则$\frac{4}{a}+\frac{9}{b}$的最小值为(  )
A.24B.25C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.${∫}_{0}^{1}$(x-x2)dx=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:x2+y2+kx+2y+k2=0和定点P(1,-1),若过点P作圆的切线有两条,则k的取值范围是(  )
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-∞,-1)∪(0,+∞)C.(-$\frac{2\sqrt{3}}{3}$,0)D.(-$\frac{2\sqrt{3}}{3}$,-1)∪({0,$\frac{2\sqrt{3}}{3}$)

查看答案和解析>>

同步练习册答案