精英家教网 > 高中数学 > 题目详情
5.若a>0,b>0,a+b=1,则$\frac{4}{a}+\frac{9}{b}$的最小值为(  )
A.24B.25C.36D.72

分析 巧妙利用1,将所求乘以a+b,展开得到关于基本不等式的形式,利用基本不等式求最小值.

解答 解:因为a>0,b>0,a+b=1,
则$\frac{4}{a}+\frac{9}{b}$=($\frac{4}{a}+\frac{9}{b}$)(a+b)=13+$\frac{4b}{a}+\frac{9a}{b}$≥13+$2\sqrt{\frac{4b}{a}×\frac{9a}{b}}$=13+12=25;
当且仅当$\frac{4}{a}=\frac{9}{b}$时,取“=”.
故选B.

点评 本题考查了利用基本不等式求最值;关键是1的巧妙利用,变形为可以利用基本不等式的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x-$\frac{a}{x}$,且f(2)=$\frac{9}{2}$.
(1)求实数a的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(λ,-1),若$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.$\sqrt{10}$B.4C.$\sqrt{17}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a$=(-1,-3),$\overrightarrow b$=(2,t),且$\overrightarrow a$∥$\overrightarrow b$,则$\overrightarrow a$-$\overrightarrow b$=(-3,-9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=-2,则$\frac{sin2α-co{s}^{2}α}{si{n}^{2}α}$=-$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{x-b,x≥1}\\{lo{g}_{2}(1-x),x<1}\end{array}\right.$,若f(f(-3))=-3,则b=(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且$\frac{cosB}{cosC}=-\frac{b}{2a+c}$.
(1)求∠B的大小;
(2)若a=2,$S=\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知F1、F2是椭圆$\frac{x^2}{λ+1}+\frac{y^2}{λ}=1\;(0<λ<1)$在左、右焦点,直线AB经过F2交椭圆于A、B两点(A点在x轴上方),连结AF1、BF1
(1)求椭圆的焦点坐标和△ABF1周长;
(2)求△ABF1面积的最大值(用λ表示).

查看答案和解析>>

同步练习册答案