精英家教网 > 高中数学 > 题目详情
16.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?

分析 (1)分别算出房子的两个侧面积乘以20再加上房子的正面面积乘以40再加上屋顶和地面的造价即为总造价;
(2)我们可以先求房屋总造价的函数解析式,利用基本不等式即可求出函数的最小值,进而得到答案.

解答 解:(1)$y=2×(2x×20+40×\frac{36}{x})+1800$…(4分)
=$80(x+\frac{36}{x})+1800(0<x≤7)$…(5分)
定义域是(0,7]…(6分)
(2)∵$x+\frac{36}{x}≥2\sqrt{36}=12$,…(9分)
当且仅当$x=\frac{36}{x}$即x=6时取=…(10分)
∴y≥80×12+1800=2760…(11分)
答:当侧面长度x=6时,总造价最低为2760元.…(12分)

点评 本题考查函数模型的构建,考查基本不等式的运用,考查分类讨论的数学思想,正确构建函数是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=ax2+2(a-1)x+2在区间(-∞,4)上是减函数,则实数a的取值范围是(  )
A.$0≤a≤\frac{1}{5}$B.$a≤\frac{1}{5}$C.a≥-3D.$a≤\frac{1}{5}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,已知前15项的和S15=45,则a8等于 (  )
A.$\frac{45}{4}$B.6C.$\frac{45}{8}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为$40\sqrt{2}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+2,则满足$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$的n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x+a)lnx,g(x)=$\frac{{2{x^2}}}{e^x}$,已知曲线y=f(x)在x=1处的切线过点(2,3).
(1)求实数a的值.
(2)是否存在自然数k,使得函数y=f(x)-g(x)在(k,k+1)内存在唯一的零点?如果存在,求出k;如果不存在,请说明理由.
(3)设函数h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的较小值),对于实数m,?x0∈(0,+∞),使得h(x0)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a>0,b>0,a+b=1,则$\frac{4}{a}+\frac{9}{b}$的最小值为(  )
A.24B.25C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(-∞,0),2x>3x,命题q:?x∈(0,1),lgx>0,则下列命题为真命题的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧qD.¬p∨q

查看答案和解析>>

同步练习册答案