精英家教网 > 高中数学 > 题目详情
7.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

分析 由题意可求三角形的三边长为sinα、sinβ、sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,由余弦定理,三角函数恒等变换的应用化简可得cosθ=-cos(α+β),结合角的范围利用同角三角函数基本关系式可求sinθ,利用正弦定理可求三角形外接圆的半径,利用圆的面积公式即可得解.

解答 (本题满分为12分)
解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),
设边长为sin(α+β)的所对的三角形内角为θ,
则由余弦定理可得,cosθ=$\frac{si{n}^{2}α+si{n}^{2}β-si{n}^{2}(α+β)}{2sinαsinβ}$
=$\frac{si{n}^{2}α+si{n}^{2}β-(sinαcosβ)^{2}-(cosαsinβ)^{2}}{2sinαsinβ}$-cosαcosβ
=$\frac{si{n}^{2}α(1-co{s}^{2}β)+si{n}^{2}β(1-co{s}^{2}α)}{2sinαsinβ}$-cosαcosβ
=sinαsinβ-cosαcosβ
=-cos(α+β),
∵α,β∈(0,$\frac{π}{2}$)
∴α+β∈(0,π)
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=sin(α+β)
设外接圆的半径为R,则由正弦定理可得2R=$\frac{sin(α+β)}{sin(α+β)}$=1,
∴R=$\frac{1}{2}$,
∴外接圆的面积S=πR2=$\frac{π}{4}$.
故选:A.

点评 本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.i是虚数单位,则复数$\frac{5i}{2-i}$的虚部为(  )
A.2iB.-2C.2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{x+1}$+$\frac{1}{3-x}$的定义域是(  )
A.{x|x≥-1}B.{x|x>-1且x≠3}C.{x|x≠-1且x≠3}D.{x|x≥-1且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x-$\frac{a}{x}$,且f(2)=$\frac{9}{2}$.
(1)求实数a的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若2cosCsinA=sinB,则△ABC的形状是(  )
A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=$\sqrt{3}$a.
(1)求角C的大小;
(2)若c=2,a2+b2=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,a1=2,a3+a5=8,则a7=(  )
A.3B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{x-b,x≥1}\\{lo{g}_{2}(1-x),x<1}\end{array}\right.$,若f(f(-3))=-3,则b=(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案