分析 (1)由已知及正弦定理可得$2sinCsinA=\sqrt{3}sinA$,结合sinA≠0,可求sinC的值,利用特殊角的三角函数值即可得解C的值.
(2)由已知及余弦定理可求ab=2,利用三角形的面积公式即可计算得解.
解答 (本小题满分10分)
解:(1)∵$2csinA=\sqrt{3}a$,
∴$2sinCsinA=\sqrt{3}sinA$,…2分
在锐角△ABC中,$A,C∈(0,\frac{π}{2})$,…3分
故sinA≠0,
∴$sinC=\frac{{\sqrt{3}}}{2}$,$C=\frac{π}{3}$.…5分
(2)∵$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}$,…6分
∴$\frac{1}{2}=\frac{6-4}{2ab}$,即ab=2,…8分
∴${S_{△ABC}}=\frac{1}{2}×2×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{2}$.…10分
点评 本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{45}{4}$ | B. | 6 | C. | $\frac{45}{8}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com