精英家教网 > 高中数学 > 题目详情
12.在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=$\sqrt{3}$a.
(1)求角C的大小;
(2)若c=2,a2+b2=6,求△ABC的面积.

分析 (1)由已知及正弦定理可得$2sinCsinA=\sqrt{3}sinA$,结合sinA≠0,可求sinC的值,利用特殊角的三角函数值即可得解C的值.
(2)由已知及余弦定理可求ab=2,利用三角形的面积公式即可计算得解.

解答 (本小题满分10分)
解:(1)∵$2csinA=\sqrt{3}a$,
∴$2sinCsinA=\sqrt{3}sinA$,…2分
在锐角△ABC中,$A,C∈(0,\frac{π}{2})$,…3分
故sinA≠0,
∴$sinC=\frac{{\sqrt{3}}}{2}$,$C=\frac{π}{3}$.…5分
(2)∵$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}$,…6分
∴$\frac{1}{2}=\frac{6-4}{2ab}$,即ab=2,…8分
∴${S_{△ABC}}=\frac{1}{2}×2×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{2}$.…10分

点评 本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若(x2+$\frac{1}{x}$)n的二项展开式中,所以二项式系数之和为64,则n=6;该展开式中的常数项为15(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是奇函数又是减函数的为(  )
A.y=x+1B.y=-x2C.$y=\frac{1}{x}$D.y=-x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}的首项a1=1,an+1=an+2n,则a5=(  )
A.$\frac{45}{2}$B.20C.21D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=3,且2Sn=an+1+2n.
(1)求a2
(2)求数列{an}的通项公式an
(3)令bn=(2n-1)(an-1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,已知前15项的和S15=45,则a8等于 (  )
A.$\frac{45}{4}$B.6C.$\frac{45}{8}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+2,则满足$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$的n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.${∫}_{0}^{1}$(x-x2)dx=$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案