分析 由题意可得得2n=64,求得n=6.在(x2+$\frac{1}{x}$)n展开式的通项公式中,令x的幂指数等于零,求得r的值,即可求得
展开式中的常数项
解答 解:由 (x2+$\frac{1}{x}$)n展开式中的二项式系数和为64,可得2n=64,∴n=6.
由于(x2+$\frac{1}{x}$)n=(x${\;}^{2}+\frac{1}{x}$)6,展开式的通项公式为 Tr+1=${∁}_{6}^{r}$•x12-2r•x-r=${∁}_{6}^{r}$•x12-3r,
令12-3r=0,r=4,故该展开式中的常数项为 ${∁}_{6}^{4}$=${∁}_{6}^{2}$=15,
故答案为 6,15.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{13}$ | B. | $\frac{9}{19}$ | C. | $\frac{11}{23}$ | D. | $\frac{9}{23}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-2)2+(y-1)2=1 | B. | (x+2)2+(y-1)2=1 | C. | (x-2)2+(y+1)2=1 | D. | (x-1)2+(y+2)2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com