精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=ax2+2(a-1)x+2在区间(-∞,4)上是减函数,则实数a的取值范围是(  )
A.$0≤a≤\frac{1}{5}$B.$a≤\frac{1}{5}$C.a≥-3D.$a≤\frac{1}{5}$或0

分析 若函数f(x)=ax2+2(a-1)x+2在区间(-∞,4)上是减函数,则a=0,或$\left\{\begin{array}{l}a>0\\ \frac{1-a}{a}≥4\end{array}\right.$,解得实数a的取值范围.

解答 解:∵函数f(x)=ax2+2(a-1)x+2在区间(-∞,4)上是减函数,
∴a=0,或$\left\{\begin{array}{l}a>0\\ \frac{1-a}{a}≥4\end{array}\right.$,
解得:$0≤a≤\frac{1}{5}$,
故选:A

点评 本题考查的知识点是函数的单调性,二次函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知点A(2,3,5),B(3,1,4),则A,B两点间的距离为(  )
A.$\sqrt{2}$B.$\sqrt{6}$C.$3\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.i是虚数单位,则复数$\frac{5i}{2-i}$的虚部为(  )
A.2iB.-2C.2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆C:x2+y2=4,直线l:y=x+b,若圆C上恰有4个点到直线l的距离都等于1,则b的取值范围是$-\sqrt{2}<b<\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a=2${\;}^{-\frac{1}{3}}}$,b=log2$\frac{1}{3}$,c=log3π,则(  )
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列说法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[-1,a])是偶函数,则实数b=-2;
②f(x)=$\sqrt{2016-{x^2}}$+$\sqrt{{x^2}-2016}$既是奇函数又是偶函数;
③若f(x+2)=$\frac{1}{f(x)}$,当x∈(0,2)时,f(x)=2x,则f(2015)=2;
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(xy)=xf(y)+yf(x),则f(x)是奇函数.其中所有正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{x+1}$+$\frac{1}{3-x}$的定义域是(  )
A.{x|x≥-1}B.{x|x>-1且x≠3}C.{x|x≠-1且x≠3}D.{x|x≥-1且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x-$\frac{a}{x}$,且f(2)=$\frac{9}{2}$.
(1)求实数a的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?

查看答案和解析>>

同步练习册答案