精英家教网 > 高中数学 > 题目详情
已知是两条不重合的直线,是三个不重合的平面,则的一个充分条件是(     )
A.
B.
C.
D.是异面直线,
D

试题分析:由平面与平面平行或相交,所以A项非的充分条件;
得平面与平面平行或相交,所以B项非的充分条件;
得平面与平面平行或相交,所以C项非的充分条件;
是异面直线,,
在直线上任取一点,则过直线和点有且只有一个平面,设平面平面
因为,所以,
因为,所以
又因为,所以.
由此可见,D项是的充分条件.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,G是上的动点。
(l)求证:平面ADG
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直四棱柱的底面为正方形,为棱的中点.

(1)求证:
(2)设中点,为棱上一点,且,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,是棱的中点.

(1)求证:平面
(2)求证:平面
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°

(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知α,β表示两个不同的平面,m是一条直线且m?α,则:“α⊥β”是“m⊥β”的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知下列命题:
①设m为直线,为平面,且m,则“m//”是“”的充要条件;
的展开式中含x3的项的系数为60;
③设随机变量~N(0,1),若P(≥2)=p,则P(-2<<0)=
④若不等式|x+3|+|x-2|≥2m+1恒成立,则m的取值范围是(,2);
⑤已知奇函数满足,且0<x<,则函数在[]上有5个零点.
其中真命题的序号是   (写出全部真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面与平面平行的条件可以是(  )
A.内有无穷多条直线与平行B.直线a//,a//
C.直线a,直线b,且a//,b//D.内的任何直线都与平行

查看答案和解析>>

同步练习册答案