精英家教网 > 高中数学 > 题目详情
13.两条直线相交,最多有1个交点; 三条直线相交,最多有3个交点; 四条直线相交,最多有6个交点;则五条直线相交,最多有10个交点;推广到n(n≥2,n∈N)条直线相交,最多有$\frac{n(n-1)}{2}$个交点.

分析 由已知中两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点,我们分析n值变化过程中,交点最多个数的变化趋势,找出规律后,归纳为一般性公式即可得到答案.

解答 解:令n条直线最多交点个数为m:
两条相交直线最多有1个交点,即n=2,m=1
三条直线最多有3个交点,即n=3,m=3
四条直线最多有6个交点点,即n=4,m=6
五条直线最多有10个交点,即n=5,m=10

则n条直线最多交点个数m=1+2+3+4+…+(n-1)=$\frac{n(n-1)}{2}$.
故答案为:10;$\frac{n(n-1)}{2}$.

点评 本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为:$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.3与3x2+2ax+b=0具有正的线性相关关系
B.回归直线过样本点的中心($\overline{x}$,$\overline{y}$)
C.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
D.若该大学某女生身高增加1cm,则其体重约增加0.85kg

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\sqrt{x+lnx-a}$,若存在x∈[1,e],使f(f(x))=x成立,则实数a的取值范围是[e+1-e2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定积分$\int_1^e{(x+\frac{1}{x}})dx$=$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a$=(2,-3),$\overrightarrow b$=(-5,8),则($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow b$等于(  )
A.-34B.34C.55D.-55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos(-$\frac{11π}{6}$)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l经过两条直线2x-3y+10=0和3x+4y-2=0的交点.
(1)若直线l与直线3x-2y+4=0垂直,求直线l的方程.
(2)若直线l′与(1)中所求直线l平行,且l′与l之间的距离为$\sqrt{13}$,求直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1>0,Sn是前n项和且S9=S18,则当n=(  )时,Sn最大.
A.12B.13C.12或13D.13或14

查看答案和解析>>

同步练习册答案