精英家教网 > 高中数学 > 题目详情
己知函数f(x)=sin x-cos x.
(1)若cosx=-,x∈[,π],求函数f (x)的值;
(2)将函数f(x)的图象向右平移m个单位,使平移后的图象关于原点对称,若0<m<π,试求m的值.
【答案】分析:(1)先根据x的范围和cosx的值求出sinx的值代入即可求解.
(2)先根据辅角公式将函数f(x)化简,再利用平移的知识可得答案.
解答:解:(1)因为cosx=-,x∈[,π],所以,sinx=
所以,f(x)=×+×=+
(2)f(x)=sinx-cosx=sin(x-),
所以,把f(x)的图象向右平移个单位,得到,
y=-sinx的图象,其图象关于原点对称.故m=
点评:本题主要考查三角函数的两角和与差的正弦公式和图象变换.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•绵阳一模)己知函数f(x)=
a
x
-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(Ⅰ)判断函数F(x)在(0,3]上的单调性;
(Ⅱ)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(Ⅲ)是否存在实数m,使得函数y=f(
2a
x2+1
)+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数f(x)=数学公式-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(I )判断函数F(x)在(0,3]上的单调性;
(II)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(III)是否存在实数m,使得函数y=f(数学公式)+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年四川省绵阳市高考数学一模试卷(理科)(解析版) 题型:解答题

己知函数f(x)=-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(I )判断函数F(x)在(0,3]上的单调性;
(II)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(III)是否存在实数m,使得函数y=f()+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案