精英家教网 > 高中数学 > 题目详情
6.幂函数f(x)=(m2-2m-2)x2-m在区间(0,+∞)上单调递减,则实数m的值是3.

分析 运用幂函数的定义,可得m2-2m-2=1,解方程,再由单调性即可得到所求值.

解答 解:幂函数f(x)=(m2-2m-2)x2-m
可得m2-2m-2=1,解得m=3或-1,
即有f(x)=x-1或f(x)=x3
由f(x)在区间(0,+∞)上单调递减,
可得m=3(-1舍去).
故答案为:3,

点评 本题考查幂函数的定义和单调性,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.对于实数a,b,c,有下列命题:
①若a>b>0,则a+$\frac{1}{b}$>b+$\frac{1}{a}$;
②若ac2>bc2,则a>b;
③若a>b>0,则$\frac{a}{b}$<$\frac{a+1}{b+1}$;
④若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则a>0,b<0.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}的前n项和为Sn,且$\sqrt{{S}_{n}}$是1与an的等差中项.
(Ⅰ)求数{an}的通项公式;
(Ⅱ)求数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l:(2λ+1)x+(λ+2)y+2λ+2=0(λ∈R),有下列四个结论:
①直线l经过定点(0,-2);
②当λ∈[1,4+3$\sqrt{3}$]时,直线l的倾斜角θ∈[120°,135°];
③若直线l在x轴和y轴上的截距相等,则λ=1;
④当λ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为$\frac{8}{9}$.
其中正确结论的是②④(填上你认为正确的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题的否定为假命题的是(  )
A.?x∈R,-x2+x-1<0B.?x∈R,|x|>x
C.?x,y∈Z,2x-5y≠12D.$?{x_0}∈R,si{n^2}{x_0}+sin{x_0}-1=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.打开“几何画板”软件进行如下操作:
①用画图工具在工作区画一个大小适中的圆C;
②用取点工具分别在圆C上和圆C外各取一个点A,B;
③用构造菜单下对应命令作出线段AB的垂直平分线l;
④作出直线AC.
设直线AC与直线l相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=log0.5(x-1)的定义域是(  )
A.[1,+∞)B.(-∞,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC三个角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列.
(Ⅰ)求角B的取值范围;
(Ⅱ)设f(x)=3sinx+4cosx,求f(B)的最大值及f(B)取得最大值时tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆心坐标为(-1,-1)且过原点的圆的方程是(  )
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

同步练习册答案