【题目】如图,几何体
中,
,
均为边长为2的正三角形,且平面
平面
,四边形
为正方形.
![]()
(1)若平面
平面
,求证:平面
平面
;
(2)若二面角
为
,求直线
与平面
所成角的正弦值.
【答案】(1)见解析(2)![]()
【解析】
(1)取
的中点
,
的中点
,连接
.可证明
,结合
,可知四边形
为平行四边形.进而由
和
及平面与平面平行的判定定理证明平面
平面
;
(2)连结
,可知
即为二面角
的平面角.以
为原点建立空间直角坐标系.由线段关系写出各个点的坐标,求得平面
的法向量,即可根据直线与平面夹角的向量关系求得直线
与平面
所成角的正弦值.
(1)证明:取
的中点
,
的中点
,连接
.如下图所示:
![]()
因为
,且平面
平面
,
所以
平面
,
同理
平面
,
所以
,
又因为
,
所以四边形
为平行四边形,
所以
,
平面
,
又
,![]()
平面
,
又因为
和
交于点![]()
所以平面
平面
.
(2)连结
,则
,
又![]()
所以
为二面角
的平面角,
所以![]()
建立如图所示的空间直角坐标系,
则![]()
![]()
所以![]()
设平面
的一个法向量是
,
则
,即
,
令
,即
,
又因为
,
所以
,
即所求的角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】已知直线
与抛物线
:
交于
,
两点,且
的面积为16(
为坐标原点).
(1)求
的方程.
(2)直线
经过
的焦点
且
不与
轴垂直,
与
交于
,
两点,若线段
的垂直平分线与
轴交于点
,试问在
轴上是否存在点
,使
为定值?若存在,求该定值及
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=![]()
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈三中团委组织了“古典诗词”的知识竞赛,从参加考试的学生中抽出60名学生(男女各30名),将其成绩分成六组
,
,…,
,其部分频率分布直方图如图所示.
![]()
(Ⅰ)求成绩在
的频率,补全这个频率分布直方图,并估计这次考试的众数和中位数;
(Ⅱ)从成绩在
和
的学生中选两人,求他们在同一分数段的概率;
(Ⅲ)我们规定学生成绩大于等于80分时为优秀,经统计男生优秀人数为4人,补全下面表格,并判断是否有99%的把握认为成绩是否优秀与性别有关?
优秀 | 非优秀 | 合计 | |
男 | 4 | 30 | |
女 | 30 | ||
合计 | 60 |
![]()
| 0.025 | 0.010 | 0.005 | 0.001 |
| 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆
经过伸缩变换
后得到曲线
.以坐标原点为极点,
轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的直角坐标方程及直线
的直角坐标方程;
(2)设点
是
上一动点,求点
到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com