精英家教网 > 高中数学 > 题目详情
直三棱柱ABC-ABC中 ,若∠BAC=90°,AB=AC=AA,则异面直线BA与AC所成的角等于 (  )
A.60°B.45°C.30°D.90°
A

试题分析:解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又三角形A1DB为等边三角形,∴∠DA1B=60°,故选A
点评:本小题主要考查直三棱柱ABC-A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知三棱柱
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.

(Ⅰ) 当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;
(Ⅱ) 设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同直线,是三个不同平面,下列命题中正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方体的棱长为1,动点在此正方体的表面上运动,且,记点的轨迹的长度为,则函数的图像可能是(    )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的:

(1)试判断是否在平面内;(回答是与否)
(2)求异面直线所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥P-ABC中,若PA=PB=PC,则顶点P在底面ABC上的射影O必为△ABC的(    )
A.内心B.垂心C.重心D.外心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示的几何体中,四边形是矩形,平面平面,已知,若分别是线段上的动点,则的最小值为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一小球,则这些球的最大半径为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案