精英家教网 > 高中数学 > 题目详情
已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;     ②l⊥α;    ③β⊥γ;     ④α⊥β.
可由上述条件可推出的结论有______(请将你认为正确的结论的序号都填上).

精英家教网
若α⊥γ,γ∩α=m,γ∩β=l,l⊥m,
由于β⊥γ不一定成立,故①m⊥β、③β⊥γ错误;
根据面面垂直的性质我们可得l⊥α,即②正确;
再由面面垂直的判定定理可得α⊥β,即④正确;
故答案为:②④.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
(1)若已知
a
b
,求tanx的值
(2)若已知f(x)=
a
b
,求f(x)的最大值及取得最大值的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内三点A(2,2),B(1,3),C(7,x)满足
BA
AC
,则x的值为(  )
A、3B、6C、7D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上动点M到定点F(0,2)的距离比M到直线y=-4的距离小2,则动点M满足的方程为
x2=8y
x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面坐标系中,点O为原点,A(-3,-4),B(5,-12)
(1)若
OC
=
OA
+
OB
OD
=
OA
-
OB
,求
OC
OD
的坐标;
(2)求
OA
OB

(3)若点P在直线AB上,且
OP
AB
,求
OP
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宜宾二模)已知平面直角坐标系xoy上的区域D由不等式组
x+y≥2
x≤1
y≤2
给定,若M(x,y)为D上的动点,A的坐标为(-1,1),则
OA
OM
的取值范围是
[0,2]
[0,2]

查看答案和解析>>

同步练习册答案