精英家教网 > 高中数学 > 题目详情
已知平面上动点M到定点F(0,2)的距离比M到直线y=-4的距离小2,则动点M满足的方程为
x2=8y
x2=8y
分析:由题意,平面上动点M到定点F(0,2)的距离等于M到直线y=-2的距离,利用抛物线的定义可得结论.
解答:解:∵平面上动点M到定点F(0,2)的距离比M到直线y=-4的距离小2,
∴平面上动点M到定点F(0,2)的距离等于M到直线y=-2的距离,
∴动点M的轨迹是以定点F(0,2)为焦点,以y=-2为准线的抛物线
∴动点M的轨迹方程为x2=8y
故答案为:x2=8y
点评:本题考查轨迹方程,考查抛物线的定义,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上的动点Q到定点F(0,1)的距离与它到定直线y=3的距离相等.
(1)求动点Q的轨迹C1的方程;
(2)过点F作直线l1交C2:x2=4y于A,B两点(B在第一象限).若|BF|=2|AF|,求直线l1的方程.
(3)试问在曲线C1上是否存在一点M,过点M作曲线C1的切线l2交抛物线C2于D,E两点,使得DF⊥EF?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2k1k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足kBMkBN=-
1
4
,证明直线l过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)已知平面内一动点 P到定点F(0,
1
2
)
的距离等于它到定直线y=-
1
2
的距离,又已知点 O(0,0),M(0,1).
(1)求动点 P的轨迹C的方程;
(2)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,以 M P为直径作圆,求该圆截直线y=
1
2
所得的弦长;
(3)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,过点 P作x轴的垂线交x轴于点 A,过点 P作(1)中的轨迹C的切线l交x轴于点 B,问:是否总有 P B平分∠A PF?如果有,请给予证明;如果没有,请举出反例.

查看答案和解析>>

科目:高中数学 来源:汕头二模 题型:解答题

已知平面内一动点 P到定点F(0,
1
2
)
的距离等于它到定直线y=-
1
2
的距离,又已知点 O(0,0),M(0,1).
(1)求动点 P的轨迹C的方程;
(2)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,以 M P为直径作圆,求该圆截直线y=
1
2
所得的弦长;
(3)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,过点 P作x轴的垂线交x轴于点 A,过点 P作(1)中的轨迹C的切线l交x轴于点 B,问:是否总有 P B平分∠A PF?如果有,请给予证明;如果没有,请举出反例.

查看答案和解析>>

科目:高中数学 来源:2012年广东省汕头市高考数学二模试卷(文科)(解析版) 题型:解答题

已知平面内一动点 P到定点的距离等于它到定直线的距离,又已知点 O(0,0),M(0,1).
(1)求动点 P的轨迹C的方程;
(2)当点 P(x,y)(x≠0)在(1)中的轨迹C上运动时,以 M P为直径作圆,求该圆截直线所得的弦长;
(3)当点 P(x,y)(x≠0)在(1)中的轨迹C上运动时,过点 P作x轴的垂线交x轴于点 A,过点 P作(1)中的轨迹C的切线l交x轴于点 B,问:是否总有 P B平分∠A PF?如果有,请给予证明;如果没有,请举出反例.

查看答案和解析>>

同步练习册答案