精英家教网 > 高中数学 > 题目详情

【题目】在直角梯形PBCD中, ,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且 ,如图.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.

【答案】解法一:(Ⅰ)证明:在题平面图形中,由题意可知,BA⊥PD,ABCD为正方形,所以在翻折后的图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,
因为SB⊥BC,AB⊥BC,SB∩AB=B
所以BC⊥平面SAB,
又SA平面SAB,
所以BC⊥SA,
又SA⊥AB,BC∩AB=B
所以SA⊥平面ABCD,
(Ⅱ)在AD上取一点O,使 ,连接EO
因为 ,所以EO∥SA
因为SA⊥平面ABCD,
所以EO⊥平面ABCD,
过O作OH⊥AC交AC于H,连接EH,
则AC⊥平面EOH,
所以AC⊥EH.
所以∠EHO为二面角E﹣AC﹣D的平面角,
在Rt△AHO中,

即二面角E﹣AC﹣D的正切值为
解法二:(Ⅰ)同方法一
(Ⅱ)解:如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,
∴平面ACD的法向为
设平面EAC的法向量为 =(x,y,z),

所以 ,可取
所以 =(2,﹣2,1).
所以
所以
即二面角E﹣AC﹣D的正切值为


【解析】(法一)(Ⅰ)由题意可知,翻折后的图中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;(Ⅱ)(三垂线法)由 考虑在AD上取一点O,使得 ,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E﹣AC﹣D的平面角,在Rt△AHO中求解即可(法二:空间向量法)(Ⅰ)同法一(Ⅱ)以A为原点建立直角坐标系,易知平面ACD的法向为 ,求平面EAC的法向量,代入公式求解即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的离心率为 ,过左焦点F1(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长F1E交抛物线y2=4cx于P,Q两点,则|PE|+|QE|的值为(
A.
B.10a
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x的图象向左平移个单位,向上平移1个单位,得到的函数解析式为(  )
A.y=sin(2x+)+1
B.y=sin(2x﹣)+1
C.y=sin(2x+)+1
D.y=sin(2x﹣)+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(

A.[ ,1]
B.[ ,1]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱 中, 的中点.

(1)求证:平面
(2)若 ,求点 到平面 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且AM:MB=1:2,E为PB的中点.

(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]为奇函数,且|logaφ|<1}的子集个数为4,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)方程f(|2x﹣1|)+k( ﹣3)有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案