精英家教网 > 高中数学 > 题目详情
(2012•河西区一模)已知平面内点A(cos
x
2
,sin
x
2
)
,点B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求当f(x)取最值时x的值.
分析:(1)先求出
OA
OB
,代入
OC
=
OA
+
OB
,根据向量的数量积的性质即可求出f(x)=|
OC
|2
,利用同角平方关系进行化简后,根据正周期公式即可求解
(2)由已知-π≤x≤π可求
x
2
+
π
4
的范围,结合正弦函数的性质即可求解函数的最值及相应的x
解答:解:(1)由题意知,
OA
=(cos
x
2
,sin
x
2
),
OB
=(1,1)
OC
=
OA
+
OB
=(1+cos
x
2
,1+sin
x
2

∴f(x)=|
OC
|2
=(1+cos
x
2
)2+(1+sin
x
2
)2

=3+2sin
x
2
+2cos
x
2

=3+2
2
sin(
x
2
+
π
4
)

∴f(x)的最小正周期T=
1
2
=4π

(2)∵-π≤x≤π
-
π
4
x
2
+
π
4
4

-
2
2
≤sin(
x
2
+
π
4
)≤1

∴当x=-π时,函数f(x)有最小值1
当x=
π
2
时,函数有最大值3+2
2
点评:本题 主要考查了向量的数量积的坐标表示的应用及三角函数的化简,正弦函数的性质等知识的综合应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河西区一模)设函数f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的单调区间;
(2)若当x∈[
1e
-1,e-1]时,不等式f(x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)若数列{an} 满足
an+1 2
an 2
=p(p为正常数,n∈N*),则称{an} 为等方比数列.甲:数列{an} 是等方比数列;乙:数列{an} 是等比数列.则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)设复数Z满足Z•(1+2i)=4+3i,则Z等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)(2x3-
1
x
7的展开式中常数项为a,则a的值为(  )

查看答案和解析>>

同步练习册答案