精英家教网 > 高中数学 > 题目详情
(2012•河西区一模)设函数f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的单调区间;
(2)若当x∈[
1e
-1,e-1]时,不等式f(x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
分析:(1)确定函数定义域,求导函数,利用导数的正负,可得f(x)的单调区间;
(2)确定函数在[
1
e
-1,e-1]上的单调性,从而可得函数的最大值,不等式,即可求得实数m的取值范围;
(3)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0,记g(x)=x-a+1-ln(1+x)2.求导函数,确定函数在区间[0,2]上的单调性,为使f(x)=x2+x+a在[0,2]上恰好有两个相异的实根,只须g(x)=0在[0,1]和(1,2]上各有一个实根,从而可建立不等式,由此可求实数a的取值范围.
解答:解:(1)函数定义域为(-∞,-1)∪(-1,+∞),
因为f′(x)=2[(x+1)-
1
x+1
]
=
2x(x+2)
x+1

由f′(x)>0得-2<x<-1或x>0,由f′(x)<0得x<-2或-1<x<0.
∴函数的递增区间是(-2,-1),(0,+∞),递减区间是(-∞,-2),(-1,0).
(2)由f′(x)=
2x(x+2)
x+1
=0得x=0或x=-2.由(1)知,f(x)在[
1
e
-1,0]上递减,在[0,e-1]上递增.
又f(
1
e
-1)=
1
e2
+2,f(e-1)=e2-2,
e2-2-
1
e2
-2
=
(e2-2)2-5
e2
>0
∴e2-2>
1
e2
+2.所以x∈[
1
e
-1,e-1]时,[f(x)]max=e2-2.故m>e2-2时,不等式f(x)<m恒成立.
(3)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0,记g(x)=x-a+1-ln(1+x)2
所以g′(x)=1-
2
1+x
=
x-1
x+1

由g′(x)>0,得x<-1或x>1,由g′(x)<0,得-1<x<1.
所以g(x)在[0,1]上递减,在[1,2]上递增,
为使f(x)=x2+x+a在[0,2]上恰好有两个相异的实根,只须g(x)=0在[0,1]和(1,2]上各有一个实根,于是有
g(0)≥0
g(1)<0
g(2)≥0
,∴
-a+1≥0
1-a+1-2ln2<0
2-a+1-2ln3≥0

∴2-2ln2<a≤3-2ln3.
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查函数与方程思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河西区一模)已知平面内点A(cos
x
2
,sin
x
2
)
,点B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求当f(x)取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)若数列{an} 满足
an+1 2
an 2
=p(p为正常数,n∈N*),则称{an} 为等方比数列.甲:数列{an} 是等方比数列;乙:数列{an} 是等比数列.则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)设复数Z满足Z•(1+2i)=4+3i,则Z等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)(2x3-
1
x
7的展开式中常数项为a,则a的值为(  )

查看答案和解析>>

同步练习册答案