精英家教网 > 高中数学 > 题目详情
(2012•河西区一模)若数列{an} 满足
an+1 2
an 2
=p(p为正常数,n∈N*),则称{an} 为等方比数列.甲:数列{an} 是等方比数列;乙:数列{an} 是等比数列.则甲是乙的(  )
分析:若{an} 为“等方比数列”,说明数列{an2}成公比为p的等比数列,而数列{an}的符号不能确定,故不一定成等比数列;反过来若“数列{an} 是等比数列”成立,说明
an+1  
an  
=q是一个非零常数,则
an+1 2
an 2
=q2是一个正常数符合等方比的定义,所以“数列{an} 是等方比数列”成立.由此可以得出正确答案.
解答:解:充分性:若数列{an} 为“等方比数列”,设
an+1 2
an 2
=p=1
可得数列{an} 的各项的绝对值相等,但符号不能确定.
比如:1,1,-1,-1,1,1,-1,-1,…,
就是一个等方比数列,而不是等比数列,故充分性不成立;
必要性:若“数列{an} 是等比数列”,设它的公比是q(q≠0)
an+1  
an  
=q⇒
an+1 2
an 2
=q2(正常数),
说明数列{an} 为“等方比数列”,故必要性成立.
综上所述,“数列{an} 是等方比数列”是“数列{an} 是等比数列”的必要非充分条件.
故选B.
点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题.将条件进行化简,找出“谁能推出谁”和“谁被谁推出”的问题,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河西区一模)设函数f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的单调区间;
(2)若当x∈[
1e
-1,e-1]时,不等式f(x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)已知平面内点A(cos
x
2
,sin
x
2
)
,点B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求当f(x)取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)设复数Z满足Z•(1+2i)=4+3i,则Z等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)(2x3-
1
x
7的展开式中常数项为a,则a的值为(  )

查看答案和解析>>

同步练习册答案