精英家教网 > 高中数学 > 题目详情
12.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面单位向量,且$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=-$\frac{1}{2}$,若平面向量$\overrightarrow{b}$满足$\overrightarrow{b}$•$\overrightarrow{{e}_{1}}$=$\overrightarrow{b}$•$\overrightarrow{{e}_{2}}$=1,则|$\overrightarrow{b}$|=2.

分析 根据平面向量的数量积,结合题意得出$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角为120°;
再由$\overrightarrow{b}$•$\overrightarrow{{e}_{1}}$=$\overrightarrow{b}$•$\overrightarrow{{e}_{2}}$=1得出$\overrightarrow{b}$与$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角相等且为60°,由此求出|$\overrightarrow{b}$|的值.

解答 解:$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面单位向量,且$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=-$\frac{1}{2}$,
∴1×1×cosθ=-$\frac{1}{2}$,
且θ为$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角,
∴θ=120°;
又平面向量$\overrightarrow{b}$满足$\overrightarrow{b}$•$\overrightarrow{{e}_{1}}$=$\overrightarrow{b}$•$\overrightarrow{{e}_{2}}$=1,
∴$\overrightarrow{b}$与$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角相等且为60°,
∴|$\overrightarrow{b}$|=2.
故答案为:2

点评 本题考查了平面向量的数量积与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若等比数列{an}的前n项和Sn=a+($\frac{1}{2}$)n-2,则a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到的图象恰好关于直线x=$\frac{π}{6}$对称,则φ的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某政府机关有在编人员160人,其中有一般干部112人,副处级以上干部16人,后勤工人32人,为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取样本,并具体实施操作.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆(x-1)2+y2=$\frac{3}{4}$的一条切线y=kx与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.(1,2)C.($\sqrt{3}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…[90,100),后得到频率分布直方图(如图所示)
(1)求分数在[70,80)中的人数;
(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5人,该5人中成绩在[40,50)的有几人;
(3)在(2)中抽取的5人中,随机抽取2人,求分数在[40,50)和[50,60)各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知M、N是焦点为F的抛物线y2=4x上两个不同点,且线段MN的中点A的横坐标是3,直线MN与x轴交于点B,则点B的横坐标的取值范围是(  )
A.(-3,3]B.(-∞,3]C.(-6,-3]D.(-6,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{{x}^{2}}{3}$+y2=1上的点到直线x+y-4=0的最大距离是(  )
A.2$\sqrt{2}$B.3$\sqrt{2}$C.$\frac{4\sqrt{2}-\sqrt{6}}{2}$D.2$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求曲线f(x)=$\frac{x}{{{e^{2x}}}}$在x=2处的切线与x轴交点A的坐标.

查看答案和解析>>

同步练习册答案