精英家教网 > 高中数学 > 题目详情
1.椭圆$\frac{{x}^{2}}{3}$+y2=1上的点到直线x+y-4=0的最大距离是(  )
A.2$\sqrt{2}$B.3$\sqrt{2}$C.$\frac{4\sqrt{2}-\sqrt{6}}{2}$D.2$\sqrt{2}$-1

分析 写出椭圆的参数方程$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(0≤α<2π),设出点P的坐标,运用点到直线的距离公式,以及两角和的正弦公式,结合正弦函数的最值,即可得到答案.

解答 解:由于椭圆$\frac{{x}^{2}}{3}$+y2=1的参数方程为:参数方程$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(0≤α<2π),设点P($\sqrt{3}$cosα,sinα),
则P到直线l:x+y-4=0的距离为d=$\frac{|\sqrt{3}cosα+sinα-4|}{\sqrt{2}}$=$\frac{|2sin(α+\frac{π}{3})-4|}{\sqrt{2}}$.
则当sin(α+$\frac{π}{3}$)=-1时,d取得最大值:3$\sqrt{2}$.
故选:B.

点评 本题考查直线与椭圆的位置关系,解题时要认真审题,注意椭圆的参数方程、点到直线的距离公式、三角函数的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若sin(θ+3π)=$\frac{4}{5}$,tan(θ-π)>0,则cosθ=(  )
A.$\frac{3}{5}$B.$-\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面单位向量,且$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=-$\frac{1}{2}$,若平面向量$\overrightarrow{b}$满足$\overrightarrow{b}$•$\overrightarrow{{e}_{1}}$=$\overrightarrow{b}$•$\overrightarrow{{e}_{2}}$=1,则|$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}1+{log_2}x,x≥1\\ 2x-1,x<1\end{array}\right.$,则f[f(0)+2]=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点为F,过点F作直线l交椭圆E于A,B两点,过点F作直线FN⊥AB,且交y轴于点N(O为坐标原点).
(1)若直线l的倾斜角为45°,求△AOB的面积;
(2)当$\overrightarrow{NA}$$•\overrightarrow{NB}$<0时,求点N的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=45°且AB=2,求三棱锥F-AEC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{(\frac{1}{3})^{x}-2,x≤0}\end{array}\right.$,则不等式f(x)≥1的解集为(  )
A.{x|x≤-1}B.{x|x≥3}C.{x|x≤-1或x≥3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若$sinθ=\frac{1}{4}$,则折痕l的长度=$\frac{64}{5}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.袋中装着标有数字1,2,3,4,5的五副羽毛球拍,现从袋中任取4支球拍,每支球拍被取出的可能性都相等
(1)求取出的4支球拍上的数字互不相同的概率
(2)用ξ表示取出的4支球拍上的最大数字,求随机变量ξ的概率分布列和数学期望.

查看答案和解析>>

同步练习册答案