| A. | {x|x≤-1} | B. | {x|x≥3} | C. | {x|x≤-1或x≥3} | D. | {x|x≤0或x≥3} |
分析 由分段函数,讨论x>0,x≤0,得到对应不等式,由指数不等式和对数不等式的解法,即可得到所求解集.
解答 解:函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{(\frac{1}{3})^{x}-2,x≤0}\end{array}\right.$,
由$\left\{\begin{array}{l}{x>0}\\{f(x)=lo{g}_{3}x≥1}\end{array}\right.$即为$\left\{\begin{array}{l}{x>0}\\{x≥3}\end{array}\right.$,
解得x≥3;
由$\left\{\begin{array}{l}{x≤0}\\{(\frac{1}{3})^{x}-2≥1}\end{array}\right.$即为$\left\{\begin{array}{l}{x≤0}\\{{3}^{-x}≥3}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x≤0}\\{-x≥1即x≤-1}\end{array}\right.$,
解得x≤-1.
综上可得,x≤-1或x≥3.
则不等式f(x)≥1的解集为{x|x≤-1或x≥3}.
故选:C.
点评 本题考查分段函数的应用:解不等式,注意运用分类讨论思想方法,考查指数不等式和对数不等式的解法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,3] | B. | (-∞,3] | C. | (-6,-3] | D. | (-6,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{4\sqrt{2}-\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com