(本小题满分12分)在几何体ABCDE中,∠BAC=
,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1
![]()
(Ⅰ)求证:DC∥平面ABE;
(Ⅱ)求证:AF⊥平面BCDE;
(Ⅲ)求证:平面AFD⊥平面AFE.
(Ⅰ)由条件知DC//EB,由线面平行的判定定理可证结论
(Ⅱ)DC⊥AF,AF⊥BC,由线面垂直的判定定理可证结论
(Ⅲ)利用(Ⅱ)的结论,由面面垂直的判定定理可证结论
【解析】
试题分析:(Ⅰ) ∵DC⊥平面ABC,EB⊥平面ABC,
∴DC//EB,
又∵DC
平面ABE,EB
平面ABE,
∴DC∥平面ABE. ……4分
(Ⅱ)∵DC⊥平面ABC,∴DC⊥AF,
又∵AF⊥BC,
∴AF⊥平面BCDE. ……8分
(Ⅲ)由(Ⅱ)知AF⊥平面BCDE,
∴AF⊥EF,在三角形DEF中,由计算知DF⊥EF,
∴EF⊥平面AFD,又EF
平面AFE,
∴平面AFD⊥平面AFE. ……12分
考点:本小题主要考查空间中线面平行、线面垂直和面面垂直的判定,考查学生的空间想象能力和推理论证能力.
点评:证明此类问题,一定要紧扣定理,要把定理中要求的条件一一列出来,不要应用显然存在就不列.
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com