精英家教网 > 高中数学 > 题目详情
已知点P是抛物线y2=2x上的动点,F是抛物线的焦点,若点A(3,2),则|PA|+|PF|的最小值是
7
2
7
2
分析:作PM⊥准线l,M为垂足,由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,故当P,A,M三点共线时,|PA|+|PM|最小为|AM|.
解答:解:由题意可得F(
1
2
,0 ),准线方程为 x=-
1
2
,作PM⊥准线l,M为垂足,
由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,
故当P,A,M三点共线时,|PA|+|PM|最小为|AM|=3-(-
1
2
)=
7
2

所以:|PA|+|PF|的最小值是
7
2

故答案为:
7
2
点评:本题重点考查抛物线的定义,判断当P,A,M三点共线时,|PA|+|PM|最小为|AM|,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )
A、5
B、
9
2
C、4
D、AD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,过点P作y轴垂线PM,垂足为M,点A的坐标是A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上动点,求P到直线l:x-y+6=0的距离的最小值.

查看答案和解析>>

同步练习册答案