精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n(n∈N*).
(Ⅰ)求p的值及an
(Ⅱ)若,记数列{bn}的前n项和为Tn,求使Tn成立的最小正整数n的值。
解:(Ⅰ)∵{an}是等差数列,

又由已知Sn=pn2+2n,
∴p=1,a1-1=2,
∴a1=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1。
(Ⅱ)由(Ⅰ)知



又∵
,∴20n>18n+9,即
又n∈N*,
∴使成立的最小正整数的n值为5。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案