精英家教网 > 高中数学 > 题目详情
2.在复平面内,复数$\frac{-3-2i}{i}$对应的点位于(  )
A.笫一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简,求出在复平面内,复数$\frac{-3-2i}{i}$对应的点的坐标得答案.

解答 解:$\frac{-3-2i}{i}$=$\frac{-i(-3-2i)}{-{i}^{2}}=-2+3i$,
在复平面内,复数$\frac{-3-2i}{i}$对应的点的坐标为:(-2,3)位于第二象限.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),向量$\overrightarrow{b}$=(1,-$\sqrt{3}$),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为C,过点F的直线与抛物线相交于A、B两点,若|AF|=3,|BF|=1,则AC的长度为(  )
A.$\sqrt{19}$B.2$\sqrt{5}$C.$\frac{3}{2}$$\sqrt{7}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1-x)(2+x)5的展开式中x3的系数为(  )
A.-40B.40C.-15D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{{x}^{2}-3x+2,x≥0}\end{array}\right.$,函数g(x)=f(x)-a恰有三个不同的零点,则实数a的取值范围为(  )
A.(-∞,-$\frac{1}{4}$]B.(-$\frac{1}{4}$,2)C.[2,+∞)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
 x 1 2 3 4
 y 7.06.5  5.5 3.8 2.2
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$•$\overrightarrow{b}$|=(  )
A.2B.$\sqrt{2}$C.1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin1470°=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示,则该几何体的体积为120.

查看答案和解析>>

同步练习册答案