精英家教网 > 高中数学 > 题目详情

已知数列的前项和满足.
(1)求数列的通项公式;(2)求数列的前项和.

(1);(2)

解析试题分析:(1)由可求得,当时,由可求得为首项与公比均为的等比数列,从而可求数列的通项公式;(2)依题意,,利用错位相减法即可求得数列的前项和
试题解析:(1)由,得,解得
时,,化简,得,故
所以
(2)由题意得:    ①,
   ②,
①-②得:
.
考点:1、数列的求和;2、等比数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,an+1 (n∈N*).
(1)求证: 数列 { }是等比数列,并求数列{an}的通项an
(2)若数列{bn}满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,等比数列的前n项和为,数列的前n项为,且前n项和满足
(1)求数列的通项公式:
(2)若数列前n项和为,问使的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 数列满足: 
(1)求证:数列是等比数列(要指出首项与公比);
(2)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正项数列中,.对任意的,函数满足.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知.
(1)求数列的通项公式;
(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设C1、C2、…、Cn、…是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.

(1)证明:{rn}为等比数列;
(2)设r1=1,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列满足, 且,其中.
(1) 求数列的通项公式;
(2) 设数列满足,是否存在正整数,使得成等比数列?若存在,求出所有的的值;若不存在,请说明理由。
(3) 令,记数列的前项和为,其中,证明:

查看答案和解析>>

同步练习册答案