精英家教网 > 高中数学 > 题目详情

【题目】已知直三棱柱的所有棱长都相等,且 分别为 的中点.

(1)求证:平面平面

(2)求证: 平面

【答案】(1)见解析;(2)见解析

【解析】试题分析:

由题意可得四边形是平行四边形, 平面由三角形中位线的性质可得平面由面面平行的判断定理可得平面平面

由直三棱柱的性质可得等腰三角形三线合一,则据此可得平面,故由菱形的性质可得结合线面垂直的判断定理可得平面

试题解析:

)由已知可得

∴四边形是平行四边形,

平面 平面

平面

分别是 的中点,

平面 平面

平面

平面 平面

∴平面平面

∵三棱柱是直三棱柱,

平面

又∵平面

又∵直三棱柱的所有棱长都相等, 边中点,

是正三角形,

平面 平面

平面

∵四边形是菱形,

,故

平面 平面

平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(﹣1,0),B(1,0)为双曲线 =1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为(
A.x2 =1
B.x2 =1
C.x2﹣y2=1
D.x2 =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线 与椭圆 在第一象限的交点为 为坐标原点, 为椭圆的右顶点, 的面积为.

求抛物线的方程;

点作直线 两点,射线分别交两点,记的面积分别为,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的值域为.

(1)求的值

(2)若不等式对任意的恒成立求实数的取值范围

(3)若函数有3个零点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

直线l的方向向量为=112),直线m的方向向量=21),则lm垂直;

直线l的方向向量=011),平面α的法向量=111),则lα

平面αβ的法向量分别为=013),=102),则αβ

平面α经过三点A101),B010),C120),向量=1ut)是平面α的法向量,则u+t=1.

其中真命题的是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:

年份

2011

2012

2013

2014

2015

居民生活用水量(万吨)

236

246

257

276

286


(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;
(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求满足的值;

(2)若函数是定义在R上的奇函数,函数满足若对任意≠0,不等式恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x+1)2+y2=20,点B(l,0).点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.
(1)求动点P的轨迹C1的方程;
(2)设 ,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线Cl于P,Q两点,求△MPQ面积的最大值.

查看答案和解析>>

同步练习册答案