精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:

直线l的方向向量为=112),直线m的方向向量=21),则lm垂直;

直线l的方向向量=011),平面α的法向量=111),则lα

平面αβ的法向量分别为=013),=102),则αβ

平面α经过三点A101),B010),C120),向量=1ut)是平面α的法向量,则u+t=1.

其中真命题的是______.(把你认为正确命题的序号都填上)

【答案】①④

【解析】 ,则

直线垂直,故①正确

,则

,故②错误

不共线,

不成立,故③错误

向量是平面的法向量

,即,解得,故④正确

综上所述,其中真命题是①,④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).

一年级

二年级

三年级

男同学

女同学

(1)用表中字母列举出所有可能的结果;

(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱侧棱与底面垂直,分别是的中点.

)求证:平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|.
(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;
(2)若f(x)≤1的解集为[0,2], =a(m>0,n>0),求证:m+4n≥2 +3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱的所有棱长都相等,且 分别为 的中点.

(1)求证:平面平面

(2)求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数f(x)-g(x)必有零点;

(2)设函数G(x)=f(x)-g(x)-1

①若函数G(x)有两相异零点且上是减函数,求实数m的取值范围。

②是否存在整数a,b使得的解集恰好为若存在,求出a,b的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为
(1)求动点M的轨迹E的方程;
(2)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出所有满足的值;若不是,请说明事由.

2)若是定义在区间上的“局部奇函数”,求实数的取值范围.

3)若为定义域上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.

(1)求证:O、B、D、E四点共圆;
(2)求证:2DE2=DMAC+DMAB.

查看答案和解析>>

同步练习册答案