精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:的焦点为F,直线y=4y轴的交点为P,与C的交点为Q,且.

(1)求抛物线C的方程;

(2)F的直线lC相交于A,B两点,若AB的垂直平分线C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.

【答案】1;(2x-y-1=0x+y-1=0.

【解析】

试题(1)由已知条件,先求点的坐标,再由及抛物线的焦半径公式列方程可求得的值,从而可得抛物线C的方程;(2)由已知条件可知直线与坐标轴不垂直,故可设直线的点参式方程:,代入消元得.设由韦达定理及弦长公式表示的中点的坐标及长,同理可得的中点的坐标及的长.由于垂直平分线,故四点在同一圆上等价于,由此列方程可求得的值,进而可得直线的方程.

试题解析:(1)设,代入,得.由题设得,解得(舍去)或∴C的方程为;(2)由题设知与坐标轴不垂直,故可设的方程为,代入.设

.故的中点为.又的斜率为的方程为.将上式代入,并整理得.设.故的中点为

由于垂直平分线,故四点在同一圆上等价于,从而,化简得,解得.所求直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,点B与点A-1,1)关于原点O对称,P是动点,且直线APBP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)设直线APBP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点且斜率为的直线与轴交于点,与椭圆交于另一个点,且点轴上的射影恰好为点

1)求点的坐标;

2)过点且斜率大于的直线与椭圆交于两点,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 .

(1)当时,讨论的单调性;

(2)若函数有两个极值点,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上单调递增,求实数的取值范围;

2)若时,求证:对于任意的,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到两点的距离之和为4,点轴上的射影是C.

1)求动点的轨迹方程;

2)过点的直线交点的轨迹于点,交点的轨迹于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线的左、右焦点分别为,过右焦点作平行于一条渐近线的直线交双曲线于点,若的内切圆半径为,则双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )

A. 月跑步平均里程的中位数为6月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳

查看答案和解析>>

同步练习册答案