精英家教网 > 高中数学 > 题目详情
在△ABC中,分别根据下列条件解三角形,其中有两解的是(  )
A、a=7,b=14,B=30°B、a=30,b=40,C=27°C、a=3,b=4,c=6D、a=6,b=4,S=8(其中S表示△ABC的面积)
分析:根据三角形的面积公式求得sinC的值,根据正弦函数的性质可知C在(0,π)上有两个解,答案可得.
解答:解:D项中S=
1
2
absinC=12sinc=8
∴sinC=
2
3

C在(0,π)上有两个解,
故答案选D
点评:本题主要考查了解三角形问题.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若A=60°,b、c分别是方程x2-7x+11=0的两个根,则a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c(b≠1),且
sinB
sinA
C
A
都是方程log
b
x=logb(4x-4)
的根,求角A、B、C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:①命题“?α∈R,sin3α=sin2α”的否定是假命题;②在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=
2
A=
π
6
B=
π
4
;③设二次函数f(x)=x2+ax+a,则“0<a<3-2
2
”是“方程f(x)-x=0的两根x1和x2满足0<x1<x2<1”的充分必要条件.④过点(
1
2
,1)且与函数y=
1
x
的图象相切的直线方程是4x+y-3=0.其中所有正确说法的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边分别为a,b,c,若关于x的方程x2-2xsin
C
2
+sin2C=0
有等根
(1)求角C;
(2)若a2+2b2=c2,求
bsinA
c

查看答案和解析>>

同步练习册答案