精英家教网 > 高中数学 > 题目详情
19.如图是一个多面体三视图,它们都是斜边长为$\sqrt{2}$的等腰Rt△,则这个多面体最长一条棱长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{3}$D.$3\sqrt{2}$

分析 根据三视图可知几何体是三棱锥,并求出棱长、判断出线面的位置关系,判断出最长的棱,再由勾股定理求解.

解答 解:根据三视图可知几何体是三棱锥,
且PC⊥平面ABC,AB⊥AC,
∵三视图都是斜边长为$\sqrt{2}$的等腰直角三角形,
∴AB=AC=PC=1,则PB是最长的棱,且PB=$\sqrt{2+1}=\sqrt{3}$,
故选B.

点评 本题考查几何体三视图的应用,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义域为R的偶函数,当x≤0时,f(x)=(x+2)2ex-1,那么函数f(x)的极值点的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:一元二次方程ax2+bx+c=0(a≠0)至多有两个不相等的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2+ax-$\frac{1}{2}$a2+36(a∈R).
(1)若f(x)在R上单调递增,求a的值;
(2)当a>1时,f(x)的极小值大于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.判断f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x<0}\\{3,x=0}\\{-{x}^{2}+2x-3,x>0}\end{array}\right.$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,a,b,c分别为内角A,B,C所对的边长,且3asinA=(3b-2c)sinB+(3c-b)sinC,则cosA=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.长方体截去一个三棱锥后的直观图和部分三视图如图所示.
(1)画出这个几何体的俯视图,并求截面AEF的面积;
(2)若M为EF的中点,求直线AM与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案