精英家教网 > 高中数学 > 题目详情

(本小题满分13分)某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面.该圆面的内接四边形是原棚户建筑用地,测量可知边界万米,万米,万米.

(1)请计算原棚户区建筑用地的面积及圆面的半径的值;

(2)因地理条件的限制,边界不能变更,而边界可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧上设计一点;使得棚户区改造的新建筑用地的面积最大,并求最大值.

 

(1)万米;(2)9万平方米.

【解析】

试题分析:(1)连接AC,根据余弦定理求得cos∠ABC的值,进而求得∠ABC,然后利用三角形面积公式分别求得△ABC和△ADC的面积,二者相加即可求得四边形ABCD的面积,在△ABC中,由余弦定理求得AC,进而利用正弦定理求得外接圆的半径.

(2)设AP=x,CP=y.根据余弦定理求得x和y的关系式,进而根据均值不等式求得xy的最大值,进而求得△APC的面积的最大值,与△ADC的面积相加即可求得四边形APCD面积的最大值.

试题解析: (1)因为四边形ABCD内接于圆,

所以∠ABC+∠ADC=180°,连接AC,由余弦定理:

AC2=42+62-2×4×6×cos∠ABC=42+22-2×2×4cos∠ADC.

所以cos∠ABC=,∵∠ABC∈(0,π),故∠ABC=60°.

S四边形ABCD=×4×6×s1n60°+×2×4×s1n120°

=8 (万平方米). 3分

在△ABC中,由余弦定理:AC2=AB2+BC2-2AB·BC·cos∠ABC=16+36-246=28

由正弦定理,得

∴R= (万米) 7分

(2)∵S四边形APCD=S△ADC+S△APC,又S△ADC=AD·CD·s1n120°=2

设AP=x,CP=y.则S△APC=xy·s1n60°=xy. 9分

又由余弦定理AC2=x2+y2-2xycos60°=x2+y2-xy=28.

∴x2+y2-xy≥2xy-xy=xy.

∴xy≤28,当且仅当x=y时取等号 11分

∴S四边形APCD=2xy≤2×28=9

∴最大面积为9万平方米. 13分

考点:解三角形的实际应用.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届辽宁省五校协作体高三上学期期中考试文科数学试卷(解析版) 题型:解答题

(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy 中,曲线C1的参数方程为:为参数),M是C1上的动点,P点满足,P点的轨迹为曲线C2.

(1)求C2的方程;

(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求

 

查看答案和解析>>

科目:高中数学 来源:2015届西藏拉萨中学高三第三次月考理科数学试卷(解析版) 题型:选择题

数列的一个通项公式是

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中数学 来源:2015届西藏拉萨中学高三第三次月考文科数学试卷(解析版) 题型:选择题

若将函数=的图象向右平移个单位,所得图象关于y轴对称,则的最小值是

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届西藏拉萨中学高三第三次月考文科数学试卷(解析版) 题型:选择题

已知集合A=,则

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省福州市高三上学期第三次质检理科数学试卷(解析版) 题型:填空题

等差数列的前n项和为,,,当取最小值时,n等于 .

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省福州市高三上学期第三次质检理科数学试卷(解析版) 题型:选择题

函数)的图象如右图所示,为了得到的图像,可以将的图像

A.向左平移个单位长度 B.向左平移个单位长度

C.向右平移个单位长度 D.向右平移个单位长度

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省福州市高三上学期第三次质检文科数学试卷(解析版) 题型:选择题

在实数集中定义一种运算“”,对任意为唯一确定的实数,且具有性质:

(1)对任意; (2)对任意.

则函数的最小值为

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省等三校高三上学期期中联考理科数学试卷(解析版) 题型:填空题

对于函数,有下列4个命题:

①任取,都有恒成立;

,对于一切恒成立;

③对任意,不等式恒成立,则实数的取值范围是

④函数个零点;

则其中所有真命题的序号是 .

 

查看答案和解析>>

同步练习册答案