15£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{1}{2}$£¬F1¡¢F2·Ö±ðΪ×ó¡¢ÓÒ½¹µã£¬¹ýF1´¹Ö±Ó볤ÖáµÄÏÒ³¤Îª3$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èçͼ£¬ÒÔÍÖÔ²³¤ÖáABΪֱ¾¶µÄÔ²£ºx2+y2=a2£¬PΪԲOÉÏÓëA£¬B²»ÖغϵÄÒ»µã£¬ÉèPAÓëÍÖÔ²½»ÓÚD£¬ÉèÖ±ÏßDF2£¬PBµÄбÂÊ·Ö±ðΪk1£¬k2£¬Èôk1=¦Ëk2£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©°Ñx=-c´úÈëÍÖÔ²µÄ±ê×¼·½³Ì¿ÉµÃ£º$\frac{{c}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬¿ÉµÃ$\frac{2{b}^{2}}{a}$=3$\sqrt{2}$£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£®ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£¬F2$£¨\sqrt{2}£¬0£©$£®Ö±ÏßPBµÄ·½³ÌΪ£º$y={k}_{2}£¨x-2\sqrt{2}£©$£¬ÔòÖ±ÏßPAµÄбÂÊΪ-$\frac{1}{{k}_{2}}$£¬Æä·½³ÌΪ£ºy=-$\frac{1}{{k}_{2}}$£¨x+2$\sqrt{2}$£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª$£¨3{k}_{2}^{2}+4£©{x}^{2}$+16$\sqrt{2}$x+32-24${k}_{2}^{2}$=0£¬ÓÉÓÚ$-2\sqrt{2}+{x}_{D}$=$\frac{-16\sqrt{2}}{3{k}_{2}^{2}+4}$£¬½âµÃxD£¬yD£¬µ±xD¡Ù¡À2ʱ£¬¿ÉµÃk1=$\frac{-4{k}_{2}}{{k}_{2}^{2}-4}$£®»¯Îª¦Ë=$\frac{4}{4-{k}_{2}^{2}}$£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©°Ñx=-c´úÈëÍÖÔ²µÄ±ê×¼·½³Ì¿ÉµÃ£º$\frac{{c}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬
¡à$\frac{2{b}^{2}}{a}$=3$\sqrt{2}$£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£®
ÁªÁ¢½â³ö£ºc=$\sqrt{2}$£¬a=2$\sqrt{2}$£¬b=$\sqrt{6}$£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$£®
£¨2£©A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£¬F2$£¨\sqrt{2}£¬0£©$£®
Ö±ÏßPBµÄ·½³ÌΪ£º$y={k}_{2}£¨x-2\sqrt{2}£©$£¬
ÔòÖ±ÏßPAµÄбÂÊΪ-$\frac{1}{{k}_{2}}$£¬Æä·½³ÌΪ£ºy=-$\frac{1}{{k}_{2}}$£¨x+2$\sqrt{2}$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{{k}_{2}}£¨x+2\sqrt{2}£©}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1}\end{array}\right.$£¬»¯Îª$£¨3{k}_{2}^{2}+4£©{x}^{2}$+16$\sqrt{2}$x+32-24${k}_{2}^{2}$=0£¬
¡÷£¾0£¬
¡à$-2\sqrt{2}+{x}_{D}$=$\frac{-16\sqrt{2}}{3{k}_{2}^{2}+4}$£¬
½âµÃxD=$\frac{6\sqrt{2}{k}_{2}^{2}-8\sqrt{2}}{3{k}_{2}^{2}+4}$£¬yD=$\frac{-12\sqrt{2}{k}_{2}}{3{k}_{2}^{2}+4}$£¬
xD-$\sqrt{2}$=$\frac{6\sqrt{2}{k}_{2}^{2}-8\sqrt{2}}{3{k}_{2}^{2}+4}-\sqrt{2}$=$\frac{3\sqrt{2}{k}_{2}^{2}-12\sqrt{2}}{3{k}_{2}^{2}+4}$£®
µ±xD¡Ù¡À2ʱ£¬
¡àk1=$\frac{-12\sqrt{2}{k}_{2}}{3\sqrt{2}{k}_{2}^{2}-12\sqrt{2}}$=$\frac{-4{k}_{2}}{{k}_{2}^{2}-4}$£®
¡ßk1=¦Ëk2£¬¡à$\frac{-4{k}_{2}}{{k}_{2}^{2}-4}$=¦Ë•k2£®
»¯Îª¦Ë=$\frac{4}{4-{k}_{2}^{2}}$£¬
¡ßk2¡ÊR£¬k2¡Ù¡À2£¬k2¡Ù0£¬
¡à¦Ë¡Ê£¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±Ïßµãбʽ¡¢Ð±ÂʼÆË㹫ʽ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Éèa¡¢b¡¢cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£º
£¨1£©£¨a+b£©£¨b+c£©£¨c+a£©£¾8abc£»
£¨2£©a+b+c£¾$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªa£¾0£¬a¡Ù1£¬Èôloga£¨2x+1£©£¼loga£¨4x-3£©£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ex£¨2x-1£©£¬g£¨x£©=ax-a£¨a¡ÊR£©£®
£¨1£©Èôy=g£¨x£©ÎªÇúÏßy=f£¨x£©µÄÒ»ÌõÇÐÏߣ¬ÇóaµÄÖµ£»
£¨2£©ÒÑÖªa£¼1£¬Èô´æÔÚΨһµÄÕûÊýx0£¬Ê¹µÃf£¨x0£©£¼g£¨x0£©£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÖ±Ïßa¡ÍÖ±Ïßb£¬ÇÒa¡ÍÆ½Ãæ¦Á£¬Ôò£¨¡¡¡¡£©
A£®b¡Î¦ÁB£®b?¦ÁC£®ÒìÃæD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®±È½ÏÏÂÁи÷×éÖµµÄ´óС£º
£¨1£©1.10.9£¬1og1.10.9£¬log0.70.8£®
£¨2£©1og53£¬1og63£¬1og73£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬ÇÒµ±x¡Ý0ÊÇ£¬f£¨x£©=x2£¬Èô¶ÔÈÎÒâµÄx¡Ê[-2-$\sqrt{2}$£¬2+$\sqrt{2}$]£¬²»µÈʽf£¨x+t£©¡Üf£¨$\sqrt{2}$x£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Éèf£¨x£©=3x+m3-x£¬m¡¢xÊÇʵÊý£®
£¨1£©Èôy=|f£¨x£©|ÊÇżº¯Êý£¬ÇómµÄÖµ£»
£¨2£©Èôx¡Ý1ʱ£¬3x[f£¨x£©+1]¡Ý0ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©µ±m=1ʱ£¬Èôlog3[3xf£¨x£©]-2x£¾a¶ÔÒ»ÇÐʵÊýx³ÉÁ¢£¬ÇóaµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª£¨1+ax£©3+£¨1-x£©5µÄÕ¹¿ªÊ½ÖÐx3µÄϵÊýΪ-2£¬ÔòaµÈÓÚ2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸