精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)若在曲线上的一点的切线方程为轴,求此时的值;

)若恒成立,求的取值范围.

【答案】;(.

【解析】

)设切点的坐标为,根据题意得出,可求得实数的值;

)构造函数,求得,然后分三种情况讨论,利用导数分析函数的单调性,根据题意得出,可得出所满足的不等关系,通过构造函数,利用导数可求的取值范围.

)设切点的坐标为

由题意可得,解得,因此,

)设,则

①当时,

时,;当时,.

所以上单调递减,在上单调递增,

所以,令,所以

②当时,易知有两个根,且有

不妨令,又,所以,由题意舍去

所以当时,;当时,

所以上单调递减,在上单调递增,

所以

,所以

,所以,得

,则

,解得(舍),

所以上单调递增,在上单调递减,

,所以

③当时,若,取,则

所以,不符合题意.

综上所述,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公同决定更换一批新的小汽车以代替原来报废的出租车,现有AB两款车型,根据以这往这两种租车车型的数据,得到两款出租车型使用寿命频数表如表:

1)填写下表,并判断是否有99%的把握认为出租车的使用寿命年数与汽车车型有关?

2)司机师傅小李准备在一辆开了4年的A型车和一辆开了4年的B型车中选择,为了尽最大可能实现3年内(含3年)不换车,试通过计算说明,他应如何选择.

参考公式:,其中na+b+c+d.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDCABCD,∠ABC90°,ESD中点.

1)证明:直线AE//平面SBC

2)点F为线段AS的中点,求二面角FCDS的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的辅助圆”.过椭圆第四象限内一点Mx轴的垂线交其辅助圆于点N,当点N在点M的下方时,称点N为点M下辅助点”.已知椭圆E上的点的下辅助点为(1,﹣1.

1)求椭圆E的方程;

2)若△OMN的面积等于,求下辅助点N的坐标;

3)已知直线lxmyt0与椭圆E交于不同的AB两点,若椭圆E上存在点P,满足,求直线l与坐标轴围成的三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】123456这六个数字所组成的允许有重复数字的三位数中,各个数位上的数字之和为9的三位数共有(

A.16B.18C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是单调函数,则实数的取值范围是_________;若存在实数,使函数有三个零点,则实数的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于两点,关于轴的对称点为.

(1)求抛物线的方程;

(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C(ab0)经过点(2,0),椭圆C上三点A,M,B与原点O构成一个平行四边形AMBO.

1)求椭圆C的方程;

2)若点B是椭圆C左顶点,求点M的坐标;

3)若A,M,B,O四点共圆,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何是一门以不规则几何形态为研究对象的几何学,科赫曲线是比较典型的分形图形,1904年瑞典数学家科赫第一次描述了这种曲线,因此将这种曲线称为科赫曲线.其生成方法是:(I)将正三角形(图(1))的每边三等分,以每边三等分后的中间的那一条线段为一边,向形外作等边三角形,并将这“中间一段”去掉,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(Ⅲ)再按上述方法继续做下去……,设图(1)中的等边三角形的边长为1,并且分别将图(1)、图(2)、图(3)、…、图(n)、…中的图形依次记作,…,,…,设的周长为,则为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案