精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
12
(sinx-cosx).
(1)求它的定义域和值域;
(2)判定它的奇偶性;
(3)判定它的周期性,若是周期函数,求出它的最小正周期.
分析:(1)由sinx-cosx>0可得,
2
sin(x-
π
4
)>0,故有 2kπ+0<x-
π
4
<2kπ+π,k∈z,由此求得x的范围,即可求得函数的定义域.再根据条件及正弦函数的有界性求得值域.
(2)由于函数的定义域不关于原点不对称,可得f(x)是非奇非偶函数.
(3)根据f(x+2π)=f(x),可得函数的周期性.
解答:解:(1)由sinx-cosx>0可得,
2
sin(x-
π
4
)>0,
∴2kπ+0<x-
π
4
<2kπ+π,k∈z,即2kπ+
π
4
<x<2kπ+
4
,k∈z.
∴定义域为 (2kπ+
π
4
,2kπ+
4
),(k∈Z).
2
sin (x-
π
4
)∈(0,
2
],∴值域为 (0,
2
].
(2)∵定义域不关于原点不对称,∴f(x)是非奇非偶函数.
(3)∵f(x+2π)=log
1
2
[sin(x+2π)-cos(x+2π)]=log
1
2
(sinx-cosx)=f(x),
∴已知函数是周期函数,且最小正周期T=2π.
点评:本题主要考查复合三角函数的单调性、奇偶性和周期性,以及定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案