精英家教网 > 高中数学 > 题目详情
求函数y=e-5x+2的导数.
考点:简单复合函数的导数
专题:导数的概念及应用
分析:直接利用复合函数的导数求解运算法则求解即可.
解答: 解:函数y=e-5x+2的导数:y′=-5e-5x
故答案为:y′=-5e-5x
点评:本题考查导数的运算,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥S-ABCD中,底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,tan∠SDA=
1
2
,E为SD的中点.
(Ⅰ)求证:CE∥平面SAB;
(Ⅱ)求三棱锥D-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=4x2关于直线x-y=0对称的抛物线的准线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=3
5
,AD=6,BD是对角线,过A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置.
(1)若平面PAE与平面ABCE所形成的二面角P-AE-B的大小为60°,求四棱锥P-ABCE的体积;
(2)若PB=
41
,求二面角P-AB-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面ABCD是正方形,侧面SAB是等腰三角形且垂直于底面,SA=SB=
5
,AB=2,E、F分别是AB、SD的中点.
(1)求证:EF∥平面SBC:
(2)求二面角F-CE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则
a
b
方向上的投影为 (  )
A、-
3
3
2
B、
3
3
2
C、-3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
lnx
x
+2x,0<a<b<e,则(  )
A、f(a)>f(b)
B、f(a)<f(b)
C、f(a)=f(b)
D、f(a)f(b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(x+45°)=
4
5
,求
(sin2x-2cos2x)
(1+tanx)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,AB=2,点C在圆O上,且∠ABC=60°,V到圆O所在的平面的距离为3,且VC垂直于圆O所在的平面,D,E分别是VA,VC的中点.
(1)求证:DE⊥平面VBC;
(2)求三棱锥V-ABC的体积.

查看答案和解析>>

同步练习册答案