精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点分别为F1,F2,离心率为$\frac{{\sqrt{3}}}{2}$,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若∠PF1F2=$\frac{5π}{6}$,求△PF1F2的面积;
(3)若P为椭圆上一点,且∠F1PF2为钝角,求P点横坐标的取值范围.

分析 (1)由题意可得:$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,$\frac{{2b}^{2}}{a}$=1,又a2=b2+c2,联立解出即可得出.
(2)F1(-1,0),由$∠P{F_1}{F_2}=\frac{5π}{6}$,可得${k}_{P{F}_{1}}$=-$\frac{\sqrt{3}}{3}$.直线PF1方程为:$y=-\frac{\sqrt{3}}{3}$(x+1).与椭圆方程联立化为:7y2+2$\sqrt{3}$y-3=0,解出yP.可得△PF1F2的面积S=$\frac{1}{2}|{y}_{P}|$•2c=|yP|.
(3)设P(x0,y0),(-2<x0<2).则$\frac{{x}_{0}^{2}}{4}$+${y}_{0}^{2}$=1.由∠F1PF2为钝角,可得$\overrightarrow{{F}_{1}P}$$•\overrightarrow{{F}_{2}P}$<0,解出即可得出.

解答 解:(1)由题意可得:$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,$\frac{{2b}^{2}}{a}$=1,又a2=b2+c2,联立解得a=2,b=1,c=$\sqrt{3}$.
∴椭圆的标准方程为$\frac{{x}^{2}}{4}$+y2=1.
(2)F1(-1,0),∵$∠P{F_1}{F_2}=\frac{5π}{6}$,∴${k}_{P{F}_{1}}$=$tan\frac{5π}{6}$=-$\frac{\sqrt{3}}{3}$.
∴直线PF1方程为:$y=-\frac{\sqrt{3}}{3}$(x+1).
联立$\left\{\begin{array}{l}{y=-\frac{\sqrt{3}}{3}(x+1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,化为:7y2+2$\sqrt{3}$y-3=0,
解得y=$\frac{-\sqrt{3}-2\sqrt{6}}{7}$,或y=$\frac{2\sqrt{6}-\sqrt{3}}{7}$.
∴△PF1F2的面积S=$\frac{1}{2}|{y}_{P}|$•2c=|yP|=$\frac{2\sqrt{6}±\sqrt{3}}{7}$.
(3)设P(x0,y0),(-2<x0<2).则$\frac{{x}_{0}^{2}}{4}$+${y}_{0}^{2}$=1.
∵∠F1PF2为钝角,∴$\overrightarrow{{F}_{1}P}$$•\overrightarrow{{F}_{2}P}$<0,
∴${x}_{0}^{2}-3$+${y}_{0}^{2}$<0,
∴${x}_{0}^{2}-3$+1-$\frac{{x}_{0}^{2}}{4}$<0,
化为:${x}_{0}^{2}$$<\frac{8}{3}$,又-2<x0<2,
解得$-\frac{2\sqrt{2}}{3}$<x0<$\frac{2\sqrt{2}}{3}$.
∴P点横坐标的取值范围为$(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、三角形面积计算公式、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示,有一块矩形空地ABCD,AB=2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.
(1)请确定入口F的选址范围;
(2)设商业区的面积为S1,绿化区的面积为S2,商业区的环境舒适度指数为$\frac{S_2}{S_1}$,则入口F如何选址可使得该商业区的环境舒适度指数最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,则实数k的取值范围是(  )
A.(-∞,40]B.[160,+∞)C.(-∞,40)∪(160,+∞)D.(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.随机抽取了40辆汽车在经过路段上某点时的车速(km/h),现将其分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.
(1)现有某汽车途经该点,则其速度低于80km/h的概率约是多少?
(2)根据直方图可知,抽取的40辆汽车经过该点的平均速度约是多少?
(3)在抽取的40辆且速度在[60,70)(km/h)内的汽车中任取2辆,求这2辆车车速都在[65,70)(km/h)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|=|$\overrightarrow{a}$-3$\overrightarrow{b}$|=3,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函数f(x)极值;
(2)求g(x)单调区间,
(3)求证:x>0时,不等式g′(x)≥1+lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论正确的是(  )
A.若直线a∥平面α,直线b⊥a,b?平面β,则α⊥β
B.若直线a⊥直线b,a⊥平面α,b⊥平面β,则α⊥β
C.过平面外的一条直线有且只有一个平面与已知平面垂直
D.过平面外一点有且只有一个平面与已知平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知二次方程x2+y2+2x+a=0表示圆,则a的取值范围为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={x|$\frac{1}{x}$>1},N={{x|y=lgx},则(  )
A.N⊆MB.N∩M=∅C.M⊆ND.N∪M=R

查看答案和解析>>

同步练习册答案