精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3-(a-1)x2+b2x
,其中a,b为常数.
(1)当a=6,b=3时,求函数f(x)的单调递增区间;
(2)若任取a∈[0,4],b∈[0,3],求函数f(x)在R上是增函数的概率.
分析:(1)将a=6,b=3代入,我们易求出函数的解析式,求出函数的导函数后,令导函数的函数值大于等于0,由此构造关于x的不等式,解不等式即可得到函数f(x)的单调递增区间;
(2)这是一个几何概型问题,我们可以先画出a∈[0,4],b∈[0,3],对应的平面区域的面积,然后再求出满足条件函数f(x)在R上是增函数时对应的平面区域的面积,计算出对应的面积后,代入几何概型公式即可得到答案.
解答:精英家教网解:(1)当a=6,b=3时,f(x)=
1
3
x3-5x2+9x
,f'(x)=x2-10x+9
令f'(x)=x2-10x+9≥0,(x-1)(x-9)≥0,解得x≤1或x≥9,
故函数f(x)的单调递增区间分别为(-∞,1]和[9,+∞)
(2)f'(x)=x2-2(a-1)x+b2
若函数f(x)在R上是增函数,则对于任意x∈R,f'(x)≥0恒成立.
所以,△=4(a-1)2-4b2≤0,即(a+b-1)(a-b-1)≤0
设“f(x)在R上是增函数”为事件A,则事件A对应的区域为(a,b)|(a+b-1)(a-b-1)≤0
全部试验结果构成的区域Ω=(a,b)|0≤a≤4,0≤b≤3,如图.
所以,P(A)=
S阴影
SΩ
=
3×4-
1
2
×1×1-
1
2
×3×3
3×4
=
7
12

故函数f(x)在R上是增函数的概率为
7
12
点评:本题考查的知识点是利用导数研究函数的单调性,几何概型及概率的应用,其中利用导函数大于等于0,则函数在该区间上单调递增,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案