精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|x2-3x+4=0},B={x|(x+1)(x2+3x-4)=0},要使A?P⊆B,求满足条件的集合P.

分析 求出方程x2-3x+4=0的判别式△后即求出A,再求出(x+1)(x2+3x-4)=0的根即求出B,再由条件列出集合B的非空子集即为集合P.

解答 解:由于方程x2-3x+4=0的判别式△=9-16=-7<0,知A=∅,
由(x+1)(x2+3x-4)=0得,x+1=0或x2+3x-4=0,解得x=-1或1或-4,则B={-1,1,-4},
∵A?P⊆B,∴集合P≠∅,且其元素全属于B,即集合P为集合B的非空子集:
{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.

点评 本题考查了集合间的包含关系和列举法求已知集合的子集,解题的关键:必须确定满足条件的集合P的元素,即明确A、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知sinθ、cosθ是关于x的方程x2-ax+a=0的两根.
(1)求实数a的值;
(2)求sin3θ+cos3θ的值;
(3)求tanθ+cotθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简:$\frac{\frac{1}{2}sin2}{cos\frac{1}{2}+cos\frac{3}{2}}$=sin$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(1+x)5的展开式中,x2的系数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.tan105°=-(2+$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED,则sin∠CED-cos∠CED=(  )
A.-$\frac{\sqrt{10}}{5}$B.$\frac{\sqrt{10}}{10}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=f(x)-3|x|为奇函数,且f(-2)=9,若g(x)=f(x)+1,则g(2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.
(1)求证:BD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}的首项为10,其前n项和Sn满足3Sn+1=3Sn+2an,数列{lgan}的前n项和Tn的最大值为6+15lg$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案